Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Res Sq ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586046

RESUMO

We present a study where predictive mechanistic modeling is used in combination with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) therapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models (but may not be directly measurable in the clinic) and easily measurable quantities or characteristics (that are not always readily incorporated into predictive mechanistic models). The mechanistic model we have applied here can predict tumor response from CT or MRI imaging based on key mechanisms underlying checkpoint inhibitor therapy, and in the present work, its parameters were combined with readily-available clinical measures from 93 patients into a hybrid training set for a deep learning time-to-event predictive model. Analysis revealed that training an artificial neural network with both mechanistic modeling-derived and clinical measures achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when only mechanistic model-derived values or only clinical data were used. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in neural network decision making, and in increasing prediction accuracy, further supporting the advantage of our hybrid approach. We anticipate that many existing mechanistic models may be hybridized with deep learning methods in a similar manner to improve predictive accuracy through addition of additional data that may not be readily implemented in mechanistic descriptions.

2.
J Exp Clin Cancer Res ; 43(1): 70, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443968

RESUMO

BACKGROUND: The combination of radiotherapy and immunotherapy (immunoradiotherapy) has been increasingly used for treating a wide range of cancers. However, some tumors are resistant to immunoradiotherapy. We have previously shown that MER proto-oncogene tyrosine kinase (MerTK) expressed on macrophages mediates resistance to immunoradiotherapy. We therefore sought to develop therapeutics that can mitigate the negative impact of MerTK. We designed and developed a MerTK specific antisense oligonucleotide (ASO) and characterized its effects on eliciting an anti-tumor immune response in mice. METHODS: 344SQR cells were injected into the right legs on day 0 and the left legs on day 4 of 8-12 weeks old female 129sv/ev mice to establish primary and secondary tumors, respectively. Radiation at a dose of 12 Gy was given to the primary tumors on days 8, 9, and 10. Mice received either anti-PD-1, anti-CTLA-4 or/and MerTK ASO starting from day 1 post tumor implantation. The composition of the tumor microenvironment and the level of MerTK on macrophages in the tumor were evaluted by flow cytometry. The expression of immune-related genes was investigated with NanoString. Lastly, the impact of MerTK ASO on the structure of the eye was histologically evaluated. RESULTS: Remarkably, the addition of MerTK ASO to XRT+anti-PD1 and XRT+anti-CTLA4 profoundly slowed the growth of both primary and secondary tumors and significantly extended survival. The ASO significantly reduced the expression of MerTK in tumor-associated macrophages (TAMs), reprograming their phenotype from M2 to M1. In addition, MerTK ASO increased the percentage of Granzyme B+ CD8+ T cells in the secondary tumors when combined with XRT+anti-CTLA4. NanoString results demonstrated that the MerTK ASO favorably modulated immune-related genes for promoting antitumor immune response in secondary tumors. Importantly, histological analysis of eye tissues demonstrated that unlike small molecules, the MerTK ASO did not produce any detectable pathology in the eyes. CONCLUSIONS: The MerTK ASO can significantly downregulate the expression of MerTK on TAMs, thereby promoting antitumor immune response. The combination of MerTK ASO with immunoradiotherapy can safely and significantly slow tumor growth and improve survival.


Assuntos
Oligonucleotídeos Antissenso , Radioimunoterapia , Feminino , Animais , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Linfócitos T CD8-Positivos , c-Mer Tirosina Quinase/genética , Proto-Oncogenes , Resultado do Tratamento
3.
Radiother Oncol ; 193: 110121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311031

RESUMO

INTRODUCTION: Adjuvant immunotherapy (IO) following concurrent chemotherapy and photon radiation therapy confers an overall survival (OS) benefit for patients with inoperable locally advanced non-small cell lung carcinoma (LA-NSCLC); however, outcomes of adjuvant IO after concurrent chemotherapy with proton beam therapy (CPBT) are unknown. We investigated OS and toxicity after CPBT with adjuvant IO versus CPBT alone for inoperable LA-NSCLC. MATERIALS AND METHODS: We analyzed 354 patients with LA-NSCLC who were prospectively treated with CPBT with or without adjuvant IO from 2009 to 2021. Optimal variable ratio propensity score matching (PSM) matched CPBT with CPBT + IO patients. Survival was estimated with the Kaplan-Meier method and compared with log-rank tests. Multivariable Cox proportional hazards regression evaluated the effect of IO on disease outcomes. RESULTS: Median age was 70 years; 71 (20%) received CPBT + IO and 283 (80%) received CPBT only. After PSM, 71 CPBT patients were matched with 71 CPBT + IO patients. Three-year survival rates for CPBT + IO vs CPBT were: OS 67% vs 30% (P < 0.001) and PFS 59% vs 35% (P = 0.017). Three-year LRFS (P = 0.137) and DMFS (P = 0.086) did not differ. Receipt of adjuvant IO was a strong predictor of OS (HR 0.40, P = 0.001) and PFS (HR 0.56, P = 0.030), but not LRFS (HR 0.61, P = 0.121) or DMFS (HR 0.61, P = 0.136). There was an increased incidence of grade ≥3 esophagitis in the CPBT-only group (6% CPBT + IO vs 17% CPBT, P = 0.037). CONCLUSION: This study, one of the first to investigate CPBT followed by IO for inoperable LA-NSCLC, showed that IO conferred survival benefits with no increased rates of toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Terapia com Prótons/efeitos adversos , Quimioterapia Adjuvante , Neoplasias Pulmonares/patologia , Imunoterapia/efeitos adversos , Estudos Retrospectivos
4.
Lancet ; 402(10405): 871-881, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37478883

RESUMO

BACKGROUND: Stereotactic ablative radiotherapy (SABR) is the standard treatment for medically inoperable early-stage non-small-cell lung cancer (NSCLC), but regional or distant relapses, or both, are common. Immunotherapy reduces recurrence and improves survival in people with stage III NSCLC after chemoradiotherapy, but its utility in stage I and II cases is unclear. We therefore conducted a randomised phase 2 trial of SABR alone compared with SABR with immunotherapy (I-SABR) for people with early-stage NSCLC. METHODS: We did an open-label, randomised, phase 2 trial comparing SABR to I-SABR, conducted at three different hospitals in TX, USA. People aged 18 years or older with histologically proven treatment-naive stage IA-IB (tumour size ≤4 cm, N0M0), stage IIA (tumour size ≤5 cm, N0M0), or stage IIB (tumour size >5 cm and ≤7 cm, N0M0) as per the American Joint Committee on Cancer version 8 staging system or isolated parenchymal recurrences (tumour size ≤7 cm) NSCLC (TanyNanyM0 before definitive surgery or chemoradiotherapy) were included in this trial. Participants were randomly assigned (1:1; using the Pocock & Simon method) to receive SABR with or without four cycles of nivolumab (480 mg, once every 4 weeks, with the first dose on the same day as, or within 36 h after, the first SABR fraction). This trial was unmasked. The primary endpoint was 4-year event-free survival (local, regional, or distant recurrence; second primary lung cancer; or death). Analyses were both intention to treat (ITT) and per protocol. This trial is registered with ClinicalTrials.gov (NCT03110978) and is closed to enrolment. FINDINGS: From June 30, 2017, to March 22, 2022, 156 participants were randomly assigned, and 141 participants received assigned therapy. At a median 33 months' follow-up, I-SABR significantly improved 4-year event-free survival from 53% (95% CI 42-67%) with SABR to 77% (66-91%; per-protocol population, hazard ratio [HR] 0·38; 95% CI 0·19-0·75; p=0·0056; ITT population, HR 0·42; 95% CI 0·22-0·80; p=0·0080). There were no grade 3 or higher adverse events associated with SABR. In the I-SABR group, ten participants (15%) had grade 3 immunologial adverse events related to nivolumab; none had grade 3 pneumonitis or grade 4 or higher toxicity. INTERPRETATION: Compared with SABR alone, I-SABR significantly improved event-free survival at 4 years in people with early-stage treatment-naive or lung parenchymal recurrent node-negative NSCLC, with tolerable toxicity. I-SABR could be a treatment option in these participants, but further confirmation from a number of currently accruing phase 3 trials is required. FUNDING: Bristol-Myers Squibb and MD Anderson Cancer Center Alliance, National Cancer Institute at the National Institutes of Health through Cancer Center Core Support Grant and Clinical and Translational Science Award to The University of Texas MD Anderson Cancer Center.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Doença Crônica , Imunoterapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Estadiamento de Neoplasias , Nivolumabe/efeitos adversos , Recidiva , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/radioterapia , Resultado do Tratamento , Adolescente , Adulto
5.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345658

RESUMO

The combination of radiation therapy (RT) and immunotherapy has emerged as a promising treatment option in oncology. Historically, x-ray radiation (XRT) has been the most commonly used form of RT. However, proton beam therapy (PBT) is gaining recognition as a viable alternative, as it has been shown to produce similar outcomes to XRT while minimizing off-target effects. The effects of PBT on the antitumor immune response have only just begun to be described, and to our knowledge no studies to date have examined the effect of PBT as part of a combinatorial immunoradiotherapeutic strategy. Here, using a 2-tumor model of lung cancer in mice, we show that PBT in tandem with an anti-PD1 antibody substantially reduced growth in both irradiated and unirradiated tumors. This was accompanied by robust activation of the immune response, as evidenced by whole-tumor and single-cell RNA sequencing showing upregulation of a multitude of immune-related transcripts. This response was further significantly enhanced by the injection of the tumor to be irradiated with NBTXR3 nanoparticles. Tumors of mice treated with the triple combination exhibited increased infiltration and activation of cytotoxic immune cells. This triple combination eradicated both tumors in 37.5% of the treated mice and showed robust long-term immunity to cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Animais , Camundongos , Radioimunoterapia , Prótons , Neoplasias Pulmonares/radioterapia , Imunoterapia
6.
Melanoma Res ; 33(4): 332-337, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37325860

RESUMO

There is no currently approved adoptive cellular therapy for solid tumors. Pre-clinical and clinical studies have demonstrated that low-dose radiotherapy (LDRT) can enhance intratumoral T cell infiltration and efficacy. This case report describes a 71-year-old female patient with rectal mucosal melanoma that had developed metastases to liver, lung, mediastinum, axillary nodes, and brain. After systemic therapies had failed, she enrolled in the radiation sub-study of our phase-I clinical trial exploring the safety and efficacy of afamitresgene autoleucel (afami-cel), genetically engineered T cells with a T cell receptor (TCR) targeting the MAGE-A4 tumor antigen in patients with advanced malignancies (NCT03132922). Prior to the infusion of afami-cel, she received concurrent lymphodepleting chemotherapy and LDRT at 5.6 Gy/4 fractions to the liver. Time to partial response was 10 weeks, and duration of overall response was 18.4 weeks. Although the patient progressed at 28 weeks, the disease was well controlled after high-dose radiotherapy to liver metastases and checkpoint inhibitors. As of the last follow-up, she remains alive over two years after LDRT and afami-cel therapy. This report suggests that afami-cel in combination with LDRT safely enhanced clinical benefit. This provides evidence for further exploring the benefit of LDRT in TCR-T cell therapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Feminino , Humanos , Idoso , Melanoma/patologia , Antígeno HLA-A2 , Imunoterapia Adotiva , Neoplasias Cutâneas/radioterapia , Receptores de Antígenos de Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos
7.
Cancer Immunol Immunother ; 72(9): 3003-3012, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37289257

RESUMO

Radiotherapy (XRT), a well-known activator of the inflammasome and immune priming, is in part capable of reversing resistance to anti-PD1 treatment. The NLRP3 inflammasome is a pattern recognition receptor which is activated by both exogenous and endogenous stimuli, leading to a downstream inflammatory response. Although NLRP3 is typically recognized for its role in exacerbating XRT-induced tissue damage, the NLRP3 inflammasome can also yield an effective antitumor response when used in proper dosing and sequencing with XRT. However, whether NLRP3 agonist boosts radiation-induced immune priming and promote abscopal responses in anti-PD1 resistant model is still unknown. Therefore, in this study, we paired intratumoral injection of an NLRP3 agonist with XRT to stimulate the immune system in both wild type (344SQ-P) and anti-PD1 resistant (344SQ-R) murine-implanted lung adenocarcinoma models. We found that the combination of XRT + NLPR3 agonist enhanced the control of implanted lung adenocarcinoma primary as well as secondary tumors in a radiological dose-dependent manner, in which 12Gyx3 fractions of stereotactic XRT was better than 5Gyx3, while 1Gyx2 did not improve the NLRP3 effect. Survival and tumor growth data also showed significant abscopal response with the triple therapy (12Gyx3 + NLRP3 agonist + α-PD1) in both 344SQ-P and 344SQ-R aggressively growing models. Multiple pro-inflammatory cytokines (IL-1b, IL-4, IL-12, IL-17, IFN-γ and GM-CSF) were elevated in the serum of mice treated with XRT + NLRP3 or triple therapy. The Nanostring results showed that NLRP3 agonist is capable of increasing antigen presentation, innate function, and T-cell priming. This study can be of particular importance to treat patients with immunologically-cold solid tumors whom are also refractory to prior checkpoint treatments.


Assuntos
Adenocarcinoma de Pulmão , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos , Apresentação de Antígeno , Citocinas
8.
Front Immunol ; 14: 1172931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180129

RESUMO

Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.


Assuntos
Neoplasias , Linfócitos T , Humanos , Neoplasias/patologia , Imunoterapia , Metabolismo Energético
9.
Radiother Oncol ; 183: 109618, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921766

RESUMO

PURPOSE: Ipilimumab plus stereotactic ablative radiotherapy (SABR) demonstrate satisfactory short-term clinical benefit and low toxicities in metastatic cancers. Here, we report the 5-year overall survival (OS) rates for patients with metastatic disease treated with this combined-modality therapy in a phase II trial (NCT02239900). METHODS AND MATERIALS: SABR was delivered to patients with metastatic lesions in the liver and lung either during the first dose (concurrent) or 1 week after the second dose (sequential) of ipilimumab (every 3 weeks for 4 cycles). SABR was administered to liver or lung metastases as 50 Gy in 4 fractions or 60 Gy in 10 fractions, considering the tumor location. The OS rates at 12, 36, and 60 months were estimated by the Kaplan-Meier method; subgroup analyses of progression-free survival (PFS) and OS by SABR-targeted lesions (liver/lung) were performed by log-rank tests. RESULTS: A total of 106 patients were enrolled in this long-term follow-up analysis. At the median follow-up time of 15.32 months (range, 0.97-82.13 months), the median PFS was 6.52 months (95% CI, 5.86-7.14) and the median OS was 15.32 months (95% CI,13.03-17.23). The 12-, 36-, and 60-month OS rates were 61%, 23%, and 15%, respectively. There was a significant difference in OS between cohorts (P = 0.039), with a stronger response observed in lung-treated subgroups. Patients who had received sequential fractions (50 Gy/4f) to the lung had improved OS compared to those who had received sequential fractions (18.29 vs 8.9 months, P = 0.043) to the liver. Subgroup analysis of SABR-targeted lesions showed that lung-targeted groups had significantly longer PFS (6.87 months vs. 5.63 months, P = 0.034) and OS (18.67 months vs. 13.63 months, P = 0.013) compared to liver-targeted groups. The sequence did not affect the outcomes of PFS and OS. Exploratory analyses showed that SABR-targeted lesions and smoking history comprised an independent risk factor for OS. CONCLUSIONS: Updated 5-year OS data from the phase II trial demonstrate the long-term clinical benefit of ipilimumab and SABR, which warrants further research and cumulative data.


Assuntos
Neoplasias Hepáticas , Neoplasias Pulmonares , Segunda Neoplasia Primária , Radiocirurgia , Humanos , Ipilimumab/efeitos adversos , Neoplasias Hepáticas/patologia , Pulmão/patologia , Neoplasias Pulmonares/patologia , Segunda Neoplasia Primária/etiologia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Resultado do Tratamento
10.
Res Sq ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824846

RESUMO

Radiotherapy (XRT), a well-known activator of the inflammasome and immune priming, is in part capable of reversing resistance to anti-PD1 treatment. Although NLRP3 is typically observed for its role in exacerbating XRT-induced tissue damage, the NLRP3 inflammasome can also be protective and augment the effect of XRT when used in proper dosing and sequencing. However, whether NLRP3 agonist boosts radiation-induced immune priming and promote abscopal responses in anti-PD1 resistant model is still unknown. Therefore, in this study, we paired intratumoral injection of an NLRP3 agonist with XRT to stimulate the immune system in both wild type (344SQ-P) and anti-PD1 resistant (344SQ-R) murine-implanted lung adenocarcinoma models. We found that the combination of XRT + NLPR3 agonist enhanced control of implanted lung adenocarcinoma primary as well as secondary tumors in a radiological dose-dependent manner, in which 12Gy x 3 fractions of stereotactic XRT was better than 5Gy x 3, while 1Gy x 2 did not improve the NLRP3 effect. Survival and tumor growth data also showed significant abscopal response with the triple therapy (12Gyx3 + NLRP3 agonist + α-PD1) in both 344SQ-P and 344SQ-R aggressively growing models. Multiple pro-inflammatory cytokines (IL-1b, IL-4, IL-12, IL-17, IFN-γ and GM-CSF) were elevated in the serum of mice treated with XRT + NLRP3 or triple therapy. The Nanostring results showed that NLRP3 agonist is capable of increasing antigen presentation, innate function, and T-cell priming. This study can be of particular importance to treat patients with immunologically-cold solid tumors whom are also refractory to prior checkpoint treatments.

11.
Adv Radiat Oncol ; 8(2): 101137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632088

RESUMO

Purpose: High intratumoral pressure, caused by tumor cell-to-cell interactions, interstitial fluid pressure, and surrounding stromal composition, plays a substantial role in resistance to intratumoral drug delivery and distribution. Radiation therapy (XRT) is commonly administered in conjunction with different intratumoral drugs, but assessing how radiation can reduce pressure locally and help intratumoral drug administration and retention is important. Methods and Materials: 344SQ-parental or 344SQ-anti-programmed cell death protein 1-resistant lung adenocarcinoma cells were established in 129Sv/Ev mice, and irradiated with either 1 Gy × 2, 5 Gy × 3, 8 Gy × 3, 12 Gy × 3, or 20 Gy × 1. Intratumoral pressure was measured every 3 to 4 days after XRT. Contrast dye was injected into the tumors 3- and 6-days after XRT, and imaged to measure drug retention. Results: In the 344SQ-parental model, low-dose radiation (1 Gy × 2) created an early window of reduced intratumoral pressure 1 to 3 days after XRT compared with untreated control. High-dose stereotactic radiation (12 Gy × 3) reduced intratumoral pressure 3 to 12 days after XRT, and 20 Gy × 1 showed a delayed pressure reduction on day 12. Intermediate doses of radiation did not significantly affect intratumoral pressure. In the more aggressive 344SQ-anti-programmed cell death protein 1-resistant model, low-dose radiation reduced pressure 1 to 5 days after XRT, and 12 Gy × 3 reduced pressure 1 to 3 days after XRT. Moreover, both 1 Gy × 2 and 12 Gy × 3 significantly improved drug retention 3 days after XRT; however, there was no significance detected 6 days after XRT. Lastly, a histopathologic evaluation showed that 1 Gy × 2 reduced collagen deposition within the tumor, and 12 Gy × 3 led to more necrotic core and higher extracellular matrix formation in the tumor periphery. Conclusions: Optimized low-dose XRT, as well as higher stereotactic XRT regimen led to a reduction in intratumoral pressure and increased drug retention. The findings from this work can be readily translated into the clinic to enhance intratumoral injections of various anticancer agents.

12.
Cancer Immunol Res ; 11(4): 486-500, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700864

RESUMO

Diverse factors contribute to the limited clinical response to radiotherapy (RT) and immunotherapy in metastatic non-small cell lung cancer (NSCLC), among which is the ability of these tumors to recruit a retinue of suppressive immune cells-such as M2 tumor-associated macrophages (TAM)-thereby establishing an immunosuppressive tumor microenvironment that contributes to tumor progression and radio resistance. M2 TAMs are activated by the STAT6 signaling pathway. Therefore, we targeted STAT6 using an antisense oligonucleotide (ASO) along with hypofractionated RT (hRT; 3 fractions of 12 Gy each) to primary tumors in three bilateral murine NSCLC models (Lewis lung carcinoma, 344SQ-parental, and anti-PD-1-resistant 344SQ lung adenocarcinomas). We found that STAT6 ASO plus hRT slowed growth of both primary and abscopal tumors, decreased lung metastases, and extended survival. Interrogating the mechanism of action showed reduced M2 macrophage tumor infiltration, enhanced TH1 polarization, improved T-cell and macrophage function, and decreased TGFß levels. The addition of anti-PD-1 further enhanced systemic antitumor responses. These results provide a preclinical rationale for the pursuit of an alternative therapeutic approach for patients with immune-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Lewis , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/metabolismo , Macrófagos , Carcinoma Pulmonar de Lewis/patologia , Microambiente Tumoral , Fator de Transcrição STAT6/metabolismo
13.
Front Immunol ; 13: 1033642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353620

RESUMO

The TGF-ß superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-ß, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-ß signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.


Assuntos
Ativinas , Proteínas Morfogenéticas Ósseas , Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Imunoterapia
14.
Front Immunol ; 13: 1022011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405757

RESUMO

The efficacy of immunoradiotherapy consisting of radiation therapy and immune checkpoint blockade relies on effectively promoting the systemic antitumor immune response's activation while simultaneously reducing local factors favoring immune suppression. We previously demonstrated that NBTXR3, a nanoparticle radioenhancer, significantly improved immune responses in a murine anti-PD1-resistant metastatic lung cancer model. We hypothesize that radioactivated-NBTXR3 addition to anti-PD1 and a second-generation anti-CTLA4 could improve treatment effectiveness. To test this hypothesis, we inoculated mice with 344SQR cells in the right and left legs to establish primary and secondary tumors. The primary tumors were intratumorally injected with NBTXR3 nanoparticles on day 7, followed by three fractions of 12 Gy radiation on days 8, 9, and 10. The secondary tumors received two fractions of 1Gy radiation on days 13 and 14. Multiple rounds of anti-PD1, anti-CTLA4 or nonfucosylated anti-CTLA4 were given to the mice. Immune profiling of the tumors revealed that the combination of NBTXR3 with immunoradiotherapy significantly upregulated the activities of a wide range of antitumor immune pathways and reduced the abundance of regulatory suppressor T cells. This combination effectively eradicated the primary and secondary tumors and increased animal survival to 75%. Remarkably, previously treated with NBTXR3-containing treatment, the survivor mice exhibited a long-lasting antitumor memory immune response. This data provides compelling evidence of the efficacy of NBTXR3 to synergize with the immunoradiotherapy approach when combined with an anti-PD1 and multiple checkpoints such as a second generation anti-CTLA4 and show the potential for clinical uses of antitumor immunomodulatory effects of NBTXR3.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Camundongos , Radioimunoterapia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Imunoterapia
15.
Front Immunol ; 13: 984318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275767

RESUMO

Radiation therapy (XRT) has a well-established role in cancer treatment. Given the encouraging results on immunostimulatory effects, radiation has been increasingly used with immune-check-point inhibitors in metastatic disease, especially when immunotherapy fails due to tumor immune evasion. We hypothesized that using high-dose stereotactic radiation in cycles (pulses) would increase T-cell priming and repertoire with each pulse and build immune memory in an incremental manner. To prove this hypothesis, we studied the combination of anti-CTLA-4 and Pulsed radiation therapy in our 344SQ non-small cell lung adenocarcinoma murine model. Primary and secondary tumors were bilaterally implanted in 129Sv/Ev mice. In the Pulsed XRT group, both primary and secondary tumors received 12Gyx2 radiation one week apart, and blood was collected seven days afterwards for TCR repertoire analysis. As for the delayed-Pulse group, primary tumors received 12Gyx2, and after a window of two weeks, the secondary tumors received 12Gyx2. Blood was collected seven days after the second cycle of radiation. The immunotherapy backbone for both groups was anti-CTLA-4 antibody to help with priming. Treatment with Pulsed XRT + anti-CTLA-4 led to significantly improved survival and resulted in a delayed tumor growth, where we observed enhanced antitumor efficacy at primary tumor sites beyond XRT + anti-CTLA-4 treatment group. More importantly, Pulsed XRT treatment led to increased CD4+ effector memory compared to single-cycle XRT. Pulsed XRT demonstrated superior efficacy to XRT in driving antitumor effects that were largely dependent on CD4+ T cells and partially dependent on CD8+ T cells. These results suggest that combinatorial strategies targeting multiple points of tumor immune evasion may lead to a robust and sustained antitumor response.


Assuntos
Adenocarcinoma , Linfócitos T CD8-Positivos , Camundongos , Animais , Carga Tumoral , Memória Imunológica , Imunoterapia , Receptores de Antígenos de Linfócitos T
16.
Front Oncol ; 12: 921473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313653

RESUMO

Purpose: We investigated the feasibility of biology-guided radiotherapy (BgRT), a technique that utilizes real-time positron emission imaging to minimize tumor motion uncertainties, to spare nearby organs at risk. Methods: Volumetric modulated arc therapy (VMAT), intensity-modulated proton (IMPT) therapy, and BgRT plans were created for a paratracheal node recurrence (case 1; 60 Gy in 10 fractions) and a primary peripheral left upper lobe adenocarcinoma (case 2; 50 Gy in four fractions). Results: For case 1, BgRT produced lower bronchus V40 values compared to VMAT and IMPT. For case 2, total lung V20 was lower in the BgRT case compared to VMAT and IMPT. Conclusions: BgRT has the potential to reduce the radiation dose to proximal critical structures but requires further detailed investigation.

17.
J Nanobiotechnology ; 20(1): 417, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123677

RESUMO

BACKGROUND: While improvements in immunoradiotherapy have significantly improved outcomes for cancer patients, this treatment approach has nevertheless proven ineffective at controlling the majority of malignancies. One of the mechanisms of resistance to immunoradiotherapy is that immune cells may be suppressed via the myriad of different immune checkpoint receptors. Therefore, simultaneous blockade of multiple immune checkpoint receptors may enhance the treatment efficacy of immunoradiotherapy. METHODS: We combined NBTXR3-enhanced localized radiation with the simultaneous blockade of three different checkpoint receptors: PD1, LAG3, and TIGIT, and tested the treatment efficacy in an anti-PD1-resistant lung cancer model in mice. 129 Sv/Ev mice were inoculated with fifty thousand αPD1-resistant 344SQR cells in the right leg on day 0 to establish primary tumors and with the same number of cells in the left leg on day 4 to establish the secondary tumors. NBTXR3 was intratumorally injected into the primary tumors on day 7, which were irradiated with 12 Gy on days 8, 9, and 10. Anti-PD1 (200 µg), αLAG3 (200 µg), and αTIGIT (200 µg) were given to mice by intraperitoneal injections on days 5, 8, 11, 14, 21, 28, 35, and 42. RESULTS: This nanoparticle-mediated combination therapy is effective at controlling the growth of irradiated and distant unirradiated tumors, enhancing animal survival, and is the only one that led to the destruction of both tumors in approximately 30% of the treated mice. Corresponding with this improved response is robust activation of the immune response, as manifested by increased numbers of immune cells along with a transcriptional signature of both innate and adaptive immunity within the tumor. Furthermore, mice treated with this combinatorial therapy display immunological memory response when rechallenged by the same cancer cells, preventing tumor engraftment. CONCLUSION: Our results strongly attest to the efficacy and validity of combining nanoparticle-enhanced radiotherapy and simultaneous blockade of multiple immune checkpoint receptors and provide a pre-clinical rationale for investigating its translation into human patients.


Assuntos
Antígenos CD/metabolismo , Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Nanopartículas/uso terapêutico , Radioimunoterapia , Receptores Imunológicos , Resultado do Tratamento , Proteína do Gene 3 de Ativação de Linfócitos
18.
Int J Radiat Oncol Biol Phys ; 114(4): 676-683, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973624

RESUMO

PURPOSE: The successes of local therapy for oligometastatic cancers cannot be extrapolated to oligoprogressive disease (OPD) because they are distinct clinical entities. Given the limited prospective data on OPD to date, summative analyses are urgently needed. METHODS AND MATERIALS: Inclusion criteria for this Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic review were as follows. First, only prospective data were included. Second, progression had to have occurred on active/ongoing systemic therapy. Third, the number of progressing areas of disease had to be explicitly listed and ≤5 in number. Fourth, all progressing sites had to undergo local therapy (radiation therapy [RT] /surgery/nonradiation ablative procedures). RESULTS: Eight trials met criteria (summing 290 patients), the vast majority of which used stereotactic RT as the local modality (most commonly, 19-20 Gy in 1 fraction, 27-33 Gy in 3 fractions, or 35-50 Gy in 5 fractions). A study on non-small cell lung cancer (NSCLC) demonstrated that stereotactic RT improved progression-free survival (PFS) and overall survival compared with historical values with systemic therapy alone. Two additional studies on epidermal growth factor receptor mutated (EGFRm) NSCLC also showed acceptable PFS with local therapy, particularly in patients who oligoprogressed on osimertinib. The only randomized trial analyzed herein showed that local therapy improved PFS for NSCLC but not breast cancer. Two trials in castration-resistant prostate cancer illustrated that a substantial proportion of patients did not require any changes in hormonal therapy or delayed the need to change systemic therapies. Lastly, 2 trials of renal cell carcinoma showed high (90%-100%) local control and median PFS of 9 months, and potentially a prolonged time to change systemic therapy. Lastly, from all patients in all trials, local therapy was tolerated well, with only 7 instances of grade 3+ toxicities. CONCLUSIONS: Based on the limited data, local therapy for oligoprogression is safe and yields encouraging short-term preliminary outcomes, but trials with larger sample sizes and longer follow-up are required for more robust conclusions.


Assuntos
Neoplasias , Radiocirurgia , Receptores ErbB , Humanos , Neoplasias/terapia , Estudos Prospectivos , Radiocirurgia/métodos
19.
Int J Radiat Oncol Biol Phys ; 114(5): 977-988, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35675852

RESUMO

It is crucial to economically justify the use of promising therapies such as stereotactic ablative radiotherapy (SABR) for oligometastatic disease (OMD). The goal of this systematic review was to provide a summative evaluation of publications that analyzed the cost-effectiveness (CE) of SABR for OMD. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided methodology, PubMed and Embase were searched for modeling-based CE studies for various forms of limited metastatic disease. Only full publications that specifically compared SABR with a systemic therapy-based approach were included. In total, 9 studies met inclusion criteria; 4 pertained to OMD with mixed histologies, 2 to oligometastatic non-small cell lung cancer, 1 to pulmonary OMD, 1 to liver OMD, and 1 to low-volume oligorecurrent castration-sensitive prostate cancer. All but 1 investigation illustrated that SABR was cost-effective for the studied population (or a subpopulation); of these studies, the incremental CE ratios for SABR (when reported) ranged from $28,000/quality-adjusted life-year (QALY) to $55,000/QALY. Of studies that reported the probability of SABR being cost-effective at common willingness-to-pay values, the median (range) probability of achieving CE was roughly 61% (30%-88%) at a $50,000/QALY threshold and 78% (31%-100%) at a $100,000/QALY threshold. Taken together, the available evidence suggests that SABR appears to be a cost-effective approach for OMD, which has implications for value-based oncologic practice and construction of future health policies. However, reassessment is required in the context of modern systemic therapies (eg, immunotherapy) as well as long-term follow-up of existing and newly reported randomized trials. Prudent patient selection remains the single most important factor influencing the CE of SABR for OMD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Masculino , Humanos , Radiocirurgia/métodos , Análise Custo-Benefício , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/secundário , Anos de Vida Ajustados por Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...